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Abstract
Using a Lax pair based on the affine SL(2,R) Kac–Moody algebra, we solve
two-dimensional reduced vacuum Einstein’s equations. We obtain explicit
determinant formulae for metric coefficients with no quadrature left. This
Lax connection also allows a new approach to the Poisson algebra of two-
dimensional reduced gravity. In particular, we show that it leads to pure c-
number r-matrices and modified Yang–Baxter equations. We explain how one
can construct classical observables within this framework.

PACS numbers: 0230J, 0420J

1. Introduction

The 2-surface commuting Killing vector reduction of source-free general relativity has the
particular property of exhibiting an infinite-dimensional symmetry group known as the Geroch
group [1], later identified by Julia [2] as the affine SL(2,R) Kac–Moody group. The reduced
Einstein’s equations (called Ernst’s equations [6]) are known to be integrable since the works
of Belinskii, Zakharov and Maison [3, 4]. Because we can apply techniques developed for
integrable systems this model, equivalent to SL(2,R)/SO(2) coset space σ -models coupled
to two-dimensional gravity and a dilaton, has been often used as a toy model for the quantization
of gravity. An extensive study has been made in this domain by Julia, Korotkin, Nicolai and
Samtleben [7, 8, 10].

Nevertheless, all of these previous works are based on a moving-pole approach which has
the disadvantage of blurring the relation between the symmetry and integrability of the model.
Moreover, previous metric formulae are not purely algebraic (even those of Letelier [9]) and
there is at least one integral which can be and has been, in a few instances [3], evaluated case
by case. Concerning the Poisson algebra, no Yang–Baxter equations were found.

Another Lax connection based on the affine SL(2,R) Kac–Moody algebra was proposed
in [11] that solves these problems. The aim of this paper is to give a brief survey of what has
been developed from this new Lax connection [11–13]. In particular, we will show how using
dressing transformations, we can obtain determinant formulae giving expressions of metric
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elements with no quadrature left. We shall also see that the Poisson brackets of the connection
lead to pure c-number-modified Yang–Baxter equations.

This paper is organized as follow. Section 2 sums up some basic results concerning two-
dimensional (2D) reduced gravity such as Ernst’s equations and Kramer–Neugebauer duality.
Section 3.2 introduces the Lax connection that will be used in the rest of our paper:

Ax = 1
2ρ

−1(∂tρ + ∂xρ)E+ − 1
2ρ

−1(∂xρ − ∂tρ)E− + 1
2 (Pxa + Pta) T

aλ

+ 1
2 (Pxa − Pta) T

aλ−1 + QxαT
α − 1

2∂t σ̂ k

At = 1
2ρ

−1(∂tρ + ∂xρ)E+ + 1
2ρ

−1(∂xρ − ∂tρ)E− + 1
2 (Pxa + Pta) T

aλ

− 1
2 (Pxa − Pta) T

aλ−1 + QtαT
α − 1

2∂xσ̂ k.

Section 4 is devoted to the dressing group, and how it can lead to simple formulae for metric
elements. We also expose vertex operators used as highest-weight representations for explicitly
evaluate expressions. In section 5, we explain how duality can solve the factorization problem
and we will give the determinant formulae for the metric and its dual. Finally, in section 6,
we will review the Poisson algebra of the model, the quite surprising c-number r-matrices
and associated modified Yang–Baxter equations. We will also show how to construct classical
observables and difficulties which occur when we try to evaluate their Poisson brackets.

2. Properties of 2D reduced gravity

In this section, we will review a few basic facts concerning 2D reduced gravity which
corresponds to the case where there are two surface orthogonal commutating Killing vectors.
We assume that these two Killing vectors are spacelike. Analytic continuation provides a way
to translate the corresponding results into the case where there is one spacelike Killing vector
and one timelike Killing vector. Under these assumptions, the metric can be brought to the
form

ds2 = ρ1/2e2σ̂ (−dt2 + dz2) + ρSij (z, t) dxi dxj (1)

where ρ(z, t) is called the dilaton and σ̂ (z, t) is the conformal factor. The symmetric 2 × 2
matrix S, normalized by det(S) = 1, can be written as S = V tV , where V is an element of
SL(2,R). V is equivalent to the internal zweibein, up to a

√
ρ factor. Note that the metric is

invariant when acting on V on the right with a global SL(2, R) reparametrization and on the
left with a local SO(2) transformation.

To write the corresponding vacuum Einstein equation (the so-called Ernst equations) in a
gauge covariant way, we can formulate them as a nonlinear sigma model on SO(2)\SL(2, R).
We will use the decomposition of sl(2, R) = h⊕ g, where h = so(2) is the maximal compact
subalgebra of sl(2, R). We denote each component of this connection as Px + Qx = V∂xV−1

and Pt + Qt = V∂tV−1, where P is an element of g and Q belongs to h. With these objects,
Einstein’s equation can be written as

∂xQt − ∂tQx + [Qx,Qt ] + [Px, Pt ] = 0 (2)

∂xPt + [Qx, Pt ] = ∂tPx + [Qt, Px] (3)

∂x (ρPx) + [Qx, ρPx] = ∂t (ρPt ) + [Qt, ρPt ] (4)(
∂2
t − ∂2

x

)
ρ = 0 (5)

((∂t ± ∂x) ρ) (∂t ± ∂x) σ̂ = −ρ 1
2 tr

(
(Px ± Pt)

2
)
. (6)

A very useful gauge choice corresponds to the case where V is triangular

V =
(

"−1/2 0
−N"1/2 "1/2

)
.
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The corresponding metric is

ds2 = ρ−1/2e2σ̂ (dz2 − dt2) + ρ"−1 dx2 + ρ"(dy − N dx)2. (7)

Thus, the metric is defined by the fields (ρ, σ̂ ,",N), up to some transformations (translations
on σ̂ and N , dilatation on ").

One of the most remarkable properties of 2D reduced gravity is the existence of a duality
relation known as the Kramer–Neugebauer duality. Replacing the original fields (ρ, σ̂ ,",N)

by their dual (ρ∗, σ̂ ∗,"∗, N∗) defined by

ρ∗ = ρ "∗ = 1/(ρ") "∗∂νN∗ = ενα"∂αN "∗e4σ̂ ∗ = "e4σ̂ (8)

we obtain a new metric ds2
∗ , which is also a solution of the vacuum Einstein’s equations. A way

to explain why this model is solvable is to verify that the global SL(2, R) transformations do
not commute with the duality operation. Thus, starting from a known solution and by applying
successive reparametrization and duality operations, we can generate an infinite number of
solutions.

3. The Lax connection

3.1. Some algebraic tools

Before dealing with the Lax connection, we shall introduce the algebra we will use. Consider
the sl(2, R) affine Kac–Moody algebra defined by the commutation relations[

Xλn, Yλm
] = [X, Y ]λm+n + 1

2nk tr(XY)δn+m,0. (9)

We twist this algebra with the order-two automorphism that leaves h invariant. It means that
for some element Xλn, if n is even, then X is an element of h, otherwise X is an element of g.
We will denote this algebra as Htaf , Htaf the associated group and B± = {Xλ±n|n > 0}⊕ kC

the two Borel subalgebras. We will use the following notation for the generators: T α with a
Greek index corresponds to the generators of h and T a with a Latin index corresponds to the
generators of g.

Actually, we will use the semi-direct product of Htaf with the Virasoro algebra. We recall
that the commutation relations for the Virasoro algebra are

[Ln,Lm] = (n − m)Lm+n + n(n2 − 1)
c

12
δn+m,0

and the crossed Lie bracket is [Ln,Xλm] = − 1
2mXλn+m. For convenience, we introduce a

particular notation for two elements of the Virasoro algebra E± = L0 −L±1, which verify the
commutation relation [E+, E−] = E+ + E−. We choose the following basis h = {σ + − σ−}
and g = {σ + + σ−, σ z} with the convention

σ + =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)
σ z =

(
1 0
0 −1

)
for the Pauli matrices. We shall use highest-weight representations during our calculations.
These representations possess two fundamental highest vector |/±〉 characterized by(
σ + − σ−) |/±〉 = ± 1

2 i|/±〉 k|/±〉 = |/±〉 and L0|/±〉 = h/±|/±〉
Xλn|/±〉 = Ln|/±〉 = 0 for n > 0. (10)

In the same way, we define the dual vectors 〈/±| such that 〈/±|Xλn = 〈/±|Ln = 0 for
n < 0.
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3.2. The Lax connection

As we mentioned before, the model is integrable. This means that an auxiliary linear system

(∂t + At)1 = 0 and (∂x + Ax)1 = 0 (11)

can be found such that the zero-curvature condition [∂t + At, ∂x + Ax] = 0 reproduces the
equations of motion. The expression of the Lax connection components that fulfils this
requirement, is

Ax = 1
2ρ

−1(∂tρ + ∂xρ)E+ − 1
2ρ

−1(∂xρ − ∂tρ)E− + 1
2 (Pxa + Pta) T

aλ

+ 1
2 (Pxa − Pta) T

aλ−1 + QxαT
α − 1

2∂t σ̂ k (12)

At = 1
2ρ

−1(∂tρ + ∂xρ)E+ + 1
2ρ

−1(∂xρ − ∂tρ)E− + 1
2 (Pxa + Pta) T

aλ

− 1
2 (Pxa − Pta) T

aλ−1 + QtαT
α − 1

2∂xσ̂ k. (13)

We shall need a seed solution from which we will generate new ones. The simplest case
we can consider is when P = Q = σ̂ = 0. This solution is called the vacuum solution and
one can easily prove it is dual to the Minkowski flat space one. The associated wavefunction
1V with a specific choice of normalization, is given by

1V =
(
ρ +

∫
∂tρ + b

2ρ

)E+ (
ρ +

∫
∂tρ + b

b′

)E−

=
(
ρ − ∫

∂tρ + c

2ρ

)−E− (
ρ − ∫

∂tρ + c

c′

)−E+

. (14)

Note that 1V develops only on the Virasoro algebra. Actually, all the coordinate
dependence will be included in 1V . The Virasoro algebra is just a way to encode this
dependence of the metric. In particular, if we conjugate 1 with 1−1

V (see [12]), we restore
this dependence into the poles (moving poles) and obtain a Lax connection similar to those of
[5, 8].

4. Dressing group and vertex operators

4.1. Dressing the vacuum

Dressing transformations are non-local gauge transformations that preserve the form of the
connection. Let g be a constant element of Htaf and its factorization on the two Borel
subalgebra g = g−1

− g+ with g± ∈ exp (B±) and consider the transformation

1 → 4− · 1 · g−1
− = 4+ · 1 · g−1

+

with 4± = (
1g1−1

)
± and 4−1

− 4+ = 1g1−1. This transformation acts on the connection
as a non-local gauge transformation

A → 4±A4−1
± − ∂4± · 4−1

±
and it can be shown that it preserves the zero-curvature condition and the form of the Lax
connection. To generate solutions we just have to dress a given wavefunction with an element
of Htaf . One can show that the phase space contains only one dressing orbit, thus we just
need a first seed metric to obtain all metrics. We draw the reader’s attention to the problem of
factorization arising when writing g = g−1

− g+. We can write g± as

g± = exp

(
±η

k

2

)
exp

(
−ϕ±

2
(σ+ − σ−)

)
(degree > 1). (15)
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Only the difference ϕ = ϕ+ − ϕ− is fixed, which is just a consequence of the local SO(2)
gauge invariance. Note that ρ is unchanged by the dressing transformation and if we dress
the vacuum wavefunction, the new conformal factor σ̂ is equal to η. It is possible to evaluate
P , Q from the previous formulae but we can have much more. The main advantage of this
method is to provide a quite direct way to find quantities that define the metric. Consider the
element Ê = Ê+ − Ê− of Htaf with

Ê± = ±
[
(σ + − σ−) ⊗

(
1 + λ±2

1 − λ±2

)
− (σ + + σ−) ⊗

(
2λ±1

1 − λ±2

)]
(16)

and the quantity

Ŷ ∗ = N∗k +
1

"∗ Ê . (17)

One can show that Ŷ ∗ is solution of ∂νŶ
∗ +

[
Aν, Ŷ

∗] = 0 with A the Lax connection
corresponding to the dual fields (ρ, σ̂ ,",N) in the triangular gauge, and therefore Ŷ ∗ =
1tr Ê1−1

tr where 1tr is the wavefunction associated with A correctly normalized and in the
triangular gauge. Now, if we consider the vacuum function dressed by some element g with
a factorization such that the resulting wavefunction is in the triangular gauge, we can easily
write the dual Ernst potential of the generated metric using the highest-weight vector defined
in section 3.1,

1

"∗ ± iN∗ = −i
〈/±|1V

(
g−1

− Êg+
)
1−1

V |/±〉
〈/±|1V g1

−1
V |/±〉 . (18)

The conformal factor (and thus its dual value using (8)) can also be expressed using matrix
elements,

e2σ̂ = 〈/+|1V g1
−1
V |/+〉〈/−|1V g1

−1
V |/−〉. (19)

At this point, we still have two problems. On one hand, we have to fix the gauge if we want
(18) to be valid, which requires choosing the factorization of g. On the other hand, we have
obtained the dual fields not the fields themselves. We shall see that these two difficulties can
be solved simultaneously.

4.2. Vertex operators

To solve these problems and to explicitly evaluate the metrics, we need a representation of
Htaf . For this purpose, we will use a vertex operator constructed using a Z2 twisted free
bosonic field. Let us denote by X̂(w) the bosonic field

X̂(w) = −i
∑
n odd

p−n

wn

n
with [pn, pm] = nδn+m,0.

The operators pn generate a Fock space, we denote by |0〉 its vacuum: pn|0〉 = 0 for n > 0.
For any charge u, let Wu(w) be the vertex operators:

Wu(w) = : exp(−iuX̂(w)):. (20)

The colons refer to the normal ordering which amounts to moving to the right the oscillators
pn with n positive. The N -point functions of these vertex operators are given by〈∏

p

Wup(wp)

〉
=
∏
p,q

(
wp − wq

wp + wq

)upuq/2

. (21)
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The representation of the affine Lie algebra on the Fock space is specified by the relation

iw
dX̂(w)

dw
=
∑
n odd

(σ zλn)w−n

±iW2(w) = 2
∑
n even

((σ + − σ−)λn)w−n − 2
∑
n odd

((σ + + σ−)λn)w−n.

(22)

The highest-weight vectors |/±〉 are identified with the vacuum vector |0〉 (the two
representations are specified by the sign in front of W2(w)).

Any element g of Htaf can be represented as a product of the vertex operator

g ≡
m∏

p=1

Wup(wp) ·
n∏

j=1

(
1 + iyjW2(wj )

)
(23)

and the quantity Ê is equivalent to ±iW2(1). Thus, using (18) and (19), we associate with each
metric two sets of parameters

{
(up,wp)

}
and

{
(yj , wj )

}
.

5. Explicit metric expressions

This section is devoted to the resolution of the previously exposed difficulties and to the
final expressions of the metric elements [12]. Here we will only use the vertex operator
representation. Most of the expressions are given up to constant factors that do not matter
when evaluating the Ernst potential.

5.1. Solving the factorization problem

The factorization problem is closely related to the duality one. It can be shown that in the
triangular gauge, we shall have

ϕ± = 1
2

(
ϕ ± ϕ∗) (24)

where ϕ and ϕ∗ are the SO(2) parameters of the metric and its dual as defined in section
(4.1). The duality conditions (8) can be expressed as a system of equations similar to Hirota’s
equations, involving matrix elements of g and g∗. When solving these equations, we obtain
the following formulae:

g = constant
m∏

p=1

Wup(wp) ·
n∏

j=1

(
1 + iyjW2(wj )

)
(25)

g∗ = constant W−1(1) ·
m∏

p=1

W−up (wp) ·
n∏

j=1

(
1 + iyjW−2(wj )

)
. (26)

Thus, duality is equivalent (up to a W−1(1) factor) to a change of the sign of the vertex operator
charges. The factorization problem is solved by the two following identities:

g−1
− W2(1)g+ = W2(1) ·

m∏
p=1

Wup(wp) ·
n∏

j=1

(
1 + iyjW2(wj )

)
(27)

g∗ −1
− W2(1)g

∗
+ = W1(1) ·

m∏
p=1

W−up (wp) ·
n∏

j=1

(
1 + iyjW−2(wj )

)
. (28)

The proof is based on equation (24), using a recurrence on the number of involved vertex
operators.
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5.2. Determinant formulae

Now we have all the tools needed to express metrics as a product of the determinant. In this
section, we will choose coordinates such that ρ is equal to t to have simpler expressions. Using
the notation

〈g〉 = 〈/+|1V g1
−1
V |/+〉 and 〈Wg〉 = 〈/+|1V g

−1
− W2(1)g+1

−1
V |/+〉 (29)

the metric elements are equivalent to

e2σ̂ = |〈g〉|2 e2σ̂ ∗ = |〈g∗〉|2 (30)

e2σ̂G22 = √
ρ |〈g∗〉|2 e2σ̂ ∗

G∗
22 = √

ρ |〈g〉|2 (31)

e2σ̂G12 = √
ρ Im

[〈g∗〉 〈Wg∗〉] e2σ̂ ∗
G∗

12 = √
ρ Im

[〈g〉 〈Wg〉] (32)

e2σ̂G11 = √
ρ |〈Wg∗〉|2 e2σ̂ ∗

G∗
11 = √

ρ |〈Wg〉|2. (33)

The various vacuum expectation values can be evaluated using the N -point function (21),

〈g〉 = = · τ(Yj |µj) 〈g∗〉 = ρ1/4 =∗ · τ(Yj Bj |µj) (34)

〈Wg〉 = ρ =w · τ(YjB2
j |µj) 〈Wg∗〉 = ρ1/4 =∗

w · τ(Yj B−1
j |µj). (35)

The τ -function is defined by

τ(Y |µ) = det n×n[1 + iV ] with Vij = 2µiYj

µi + µj

(36)

with the following parameters

Xj = ρ
w2

j − 1

(wj − z)2 + ρ2
and µ2

j = (wj − z) + ρ

(wj − z) − ρ
(37)

Yj = yj Xj

(
m∏

p=1

B
up
jp

)
with Bjp = µj − µp

µj + µp

and Bj = 1 − µj

1 + µj

. (38)

Finally, the prefactors = and =w are given by

= =
(

m∏
p=1

X
u2
p/4

p

)(∏
p<q

B
upuq/2
pq

)
=∗ =

(
m∏

p=1

B
up/2
p

)
=

=w =
(

m∏
p=1

B
up
p

)
= =∗

w =
(

m∏
p=1

B
−up/2
p

)
=.

(39)

As we mentioned in the introduction, the metric formulae have no quadrature left. They
are expressed in quite a compact way using determinants and provide the metric and its dual
at the same time. As an example of an application, if we take the following sets of parameters:

{(zp, up)} = {(1,−1), (+∞,−1), (−1,−1)}
and

{(zj , yj )} =
{(

1,− q

4(1 + p)

)
,

(
−1,

q

4(1 + p)

)}
we obtain the Chandrasekhar–Xantopoulos solution [14] describing collisions of two impulsive
gravitational waves with non-collinear polarization vectors.
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6. Poisson algebra and r-matrix formulation

We have seen that the Lax connection is the key to quite simple methods for generating
the solution. One could ask whether it could also be the starting point of a new method
for quantizing the model. In this section, we will focus on the classical structure and the
surprisingly simple form of the modified Yang–Baxter equations.

6.1. Canonical brackets

First of all, let us describe our phase space. As in [8], it is defined by the canonical variables
Px,Qx, ρ, σ̂ and their associated momenta AP ,AQ,Aρ,Aσ̂ . Here we use the canonical
Poisson brackets to define the symplectic structure (

{
ρ(x),Aρ(y)

} = δ(x − y) and so on).
To make contact with the model, we have to express the quantities Pt and Qt in terms of

the canonical variables. We define the variable Pt as

−ρPt = ∂xAP + [Qx,AP ] +
[
Px,AQ

]
. (40)

Qt will be considered to have vanishing brackets with all variables. We also need the generator
of the local SO(2) gauge transformation

−B = ∂xQx +
[
Qx,AQ

]
+ [Px,AP ] ≡ 0. (41)

6.2. Modified Yang–Baxter equations

We will use the standard index-free tensor notation. For some elementX, we defineX1 ≡ X⊗I

and X2 ≡ I ⊗ X. We will also introduce the decomposition of the Casimir element C12 of
sl(2, R): C12 = c12 + d12, with c12 = T α ⊗ Tα and d12 = T a ⊗ Ta . The validity of this
decomposition is due to the orthogonality of generators with respect to the Killing form.

The Poisson brackets of the Lax connection are those of a non-ultralocal theory [15] with
an SO(2) gauge invariance. They are written as

{Ax1(x), Ax2(y)} = 1

ρ(x)
δ(x − y)

( [
rε12, Ax1(x)

]
+
[
sε12, Ax2(x)

] )
+

(
1

ρ(x)
s12 − 1

ρ(y)
r12

)
∂xδ(x − y)

−1

8

1

ρ2(x)
δ(x − y) [U12,B1(x) − B2(x)] (42)

where

r±
12 = 1

2

(1 − λ2
1)(1 − λ2

2)

λ2
1 − λ2

2

c12 +
1

2

λ1λ
−1
2 (1 − λ2

2)
2

λ2
1 − λ2

2

d12 ∓ 1
2

(
E± ⊗ k + 1

2k ⊗ (E+ + E−)
)

(43)

s±
12 = 1

2

(1 − λ2
1)(1 − λ2

2)

λ2
1 − λ2

2

c12 +
1

2

λ−1
1 λ2(1 − λ2

1)
2

λ2
1 − λ2

2

d12 ∓ 1
2

(
k ⊗ E∓ + 1

2 (E+ + E−) ⊗ k
)

(44)

U12 = d12(λ1 − λ−1
1 )(λ2 − λ−1

2 ). (45)

The rational functions that appear in (43) and (44), only have a meaning as formal power series.
So, whether we choose |λ1| < |λ2| or |λ1| > |λ2| when developing, we obtain two different
sets of matrices (here a + convention refers to the case |λ1| < |λ2|). The validity of the brackets
(42) (antisymmetry, independence with respect to the convention and Jacobi identity) is based
on some relations verified by the constant involved matrices. The only non-pure c-number
relation is

[rε12 − r−ε
12 , Ax1 + Ax2] = − (ρ−1∂xρ

)
(rε12 − r−ε

12 ). (46)
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Note that in a more traditional case (such as Toda’s field theory), the difference between the
r-matrices taken in two different conventions is proportional to the Casimir operator which is
obviously not the case here. The other relations are

rε12 = −s−ε
21

rε12 − r−ε
12 = sε12 − s−ε

12 (47)

U12 = U21.

In particular, we have two identities that allow one to verify the Jacobi identity. These modified
Yang–Baxter equations can be written as

[rε1
12, r

ε2
23] + [sε2

23, s
ε3
31] + [sε3

31, r
ε1
12] − 1

2k2s
ε3
31 − 1

2k3r
ε1
12 − 1

4 [U23, c12] = 0 (48)[
r
ε2
23, U12

]
+ [sε2

23, U13] + 1
2k3U12 − 1

2k2U13 = 0. (49)

The choice of the three conventions has to be consistent. This condition can be written
as |ε1 + ε2 + ε3| = 1. What is quite remarkable is that the factorization of the coordinate
dependence (through ρ) in (42) implies pure c-number equations for the modified Yang–
Baxter equations. Introducing a Virasoro algebra allowed us to eliminate the coordinate
dependence of these equations. Equations (48) and (49) can be interpreted as consistency
conditions for linear Poisson brackets (see [13]), but we still lack a quadratic interpretation.
Note that these calculations can easily be generalized to G/H coset space σ -models coupled
to two-dimensional gravity and a dilaton.

A different approach to this problem based on another Lax formulation with moving poles
has been described in [8].

6.3. Classical observables

By definition, classical observables are functionals of the phase space variables that commute
with the constraints. In our model, there are three constraints: two constraints associated with
invariance under diffeomorphisms in the t and z directions whose generators are, respectively,

H = −AρAσ̂ − ∂xρ∂xσ̂ + 1
2ρ tr

(
P 2
t + P 2

x

)
+ tr (QtB) (50)

and

P = Aρ∂xρ + Aσ̂∂xσ̂ + ρ tr (PtPx) + tr (QxB) (51)

and one associated with invariance under local SO(2) gauge transformations generated by B

(see formula (41)). Thus, in our model, an observable O has to satisfy

{H(x),O(y)} = 0 {P(x),O(y)} = 0 and {B(x),O(y)} = 0.

The idea is to consider the monodromy matrix 1(x, y) = 1(x)1−1(y) between two
particular points, guided by the picture of cylindrical symmetry. First, we suppose there is
a point x∞ where ρ tends to ∞ and the metric is equivalent to flat Minkowski space. This
is equivalent to saying that the metric is asymptotically flat. The other natural and usual
point we shall consider is when ρ tends to 0 (as x goes to x0) and behaves like the usual
radial coordinates. With these boundary conditions, it can be proved that 1−1

V (x0)1(x0, x∞)

commutes with the diffeomorphism constraints. Deducing objects that are also invariant under
SO(2) gauge transformations is quite obvious. We only need to conjugate the previous quantity
with ζ defined by ∂µζ + Qµζ = 0. Thus, the object

1̃(x0, x∞) = ζ−1(x0)1
−1
V (x0)1(x0, x∞)ζ(x∞) (52)

is an observable and since it is an operator, it provides an infinite set of physical observables.
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To go further, we shall need to decipher the Poisson algebra of these observables.
Unfortunately, the Poisson brackets for two monodromy matrices between two identical points
are ill-defined. Such a difficulty also appears in other non-ultralocal theories (see [16, 17]).
However, we hope that with some reasonable boundary conditions we will manage to find a
way to solve it, as in [8].
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